Skip to main content
Log in

Statistical Dimensioning of Nutrient Loading Reduction: LLR Assessment Tool for Lake Managers

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Implementation of the EU Water Framework Directive (WFD) has set a great challenge on river basin management planning. Assessing the water quality of lakes and coastal waters as well as setting the accepted nutrient loading levels requires appropriate decision supporting tools and models. Uncertainty that is inevitably related to the assessment results and rises from several sources calls for more precise quantification and consideration. In this study, we present a modeling tool, called lake load response (LLR), which can be used for statistical dimensioning of the nutrient loading reduction. LLR calculates the reduction that is needed to achieve good ecological status in a lake in terms of total nutrients and chlorophyll a (chl-a) concentration. We show that by combining an empirical nutrient retention model with a hierarchical chl-a model, the national lake monitoring data can be used more efficiently for predictions to a single lake. To estimate the uncertainties, we separate the residual variability and the parameter uncertainty of the modeling results with the probabilistic Bayesian modeling framework. LLR has been developed to answer the urgent need for fast and simple assessment methods, especially when implementing WFD at such an extensive scale as in Finland. With a case study for an eutrophic Finnish lake, we demonstrate how the model can be utilized to set the target loadings and to see how the uncertainties are quantified and how they are accumulating within the modeling chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antikainen R, Haapanen R, Lemola R, Nousiainen JI, Rekolainen S (2008) Nitrogen and phosphorus flows in the Finnish agricultural and Forest Sectors, 1910–2000. Water Air Soil Pollut 194:163–177

    Article  CAS  Google Scholar 

  • Aroviita J, Hellsten S, Jyväsjärvi J, Järvenpää L, Järvinen M, Karjalainen SM, Kauppila P, Keto A, Kuoppala M, Manni K, Mannio J, Mitikka S, Olin M, Perus J, Pilke A, Rask M, Riihimäki J, Ruuskanen A, Siimes K, Sutela T, Vehanen T, Vuori K-M (2012) Ohje pintavesien ekologisen ja kemiallisen tilan luokitteluun vuosille 2012–2013—päivitetyt arviointiperusteet ja niiden soveltaminen (Guidelines for the ecological and chemical status classification of surface waters for 2012–2013—updated assessment criteria and their application). Ympäristöhallinnon ohjeita (Environmental Administration Guidelines) 7(2012):1–144 (in Finnish)

    Google Scholar 

  • Borsuk ME, Stow CA, Reckhow KH (2002) Predicting the frequency of water quality standard violations: a probabilistic approach for TMDL development. Environ Sci Technol 36(10):2109–2115

    Article  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Carvalho L, Poikane S, Lyche Solheim A, Phillips G, Borics G, Catalan J, De Hoyos C, Drakare S, Dudley BJ, Jarvinen M, Laplace-Treyture C, Maileht K, McDonald C, Mischke U, Moe J, Morabito G, Noges P, Noges T, Ott I, Pasztaleniec A, Skjelbred B, Thackeray SJ (2013) Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 704(1):127–140. doi:10.1007/s10750-012-1344-1

    Article  CAS  Google Scholar 

  • Chapra S (1975) Comment on “An empirical method of estimating the retention of phosphorus in lakes” by W. B. Kirchner and P. J. Dillon. Water Resour Res 11:1033–1034

    Article  CAS  Google Scholar 

  • Chapra S (2003) Engineering water quality models and TMDLs. J Water Resour Plan Manag 129(4):247–256

    Article  Google Scholar 

  • Cheng V, Arhonditsis GB, Brett MT (2010) A revaluation of lake-phosphorus loading models using a Bayesian hierarchical framework. Ecol Res 25(1):59

    Article  Google Scholar 

  • CIS (2003) Common Implementation Strategy For The Water Framework Directive (2000/60/EC). Guidance Document No 10. Rivers and Lakes - Typology, Reference Conditions and Classification Systems. Produced by Working Group 2.3 - REFCOND. European Communities 2003

  • CIS (2005) Common Implementation Strategy For The Water Framework Directive (2000/60/EC). Guidance Document No 2. Identification of Water Bodies. Produced by Working Group on Water Bodies. European Communities 2005

  • Clarke RT (2012) Estimating confidence of European WFD ecological status class and WISER Bioassessment Uncertainty Guidance Software (WISERBUGS). Hydrobiologia 704(1):39–56

    Article  Google Scholar 

  • Doherty J, Christensen S (2011) Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water Resour. Res. 47, W12534. doi:10.1029/2011WR010763

  • European Parliament & Council (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J of the Eur Communities L 327, 1-73. Office for Official Publications of the European Communities, Brussels

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Gronewold AD, Borsuk M (2009) A software tool for translating deterministic model results into probabilistic assessments of water quality standard compliance. Environ Model Softw 24:1257–1262

    Article  Google Scholar 

  • Gronewold AD, Borsuk ME (2010) Improving water quality assessments through a hierarchical Bayesian analysis of variability. Environ Sci Technol 44(20):7858–7864

    Article  CAS  Google Scholar 

  • Haario H, Laine M, Mira A, Saksman E (2006) DRAM: Efficient adaptive MCMC. Statistics and Computing 16(4):339–354. doi:10.1007/s11222-006-9438-0

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J Stat Softw 33(2):1–22

    Google Scholar 

  • Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen A-S, Johnson RK, Moe J, Pont D, Lyche Solheim A, van de Bund W (2010) The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019

    Article  CAS  Google Scholar 

  • Hering D, Borja A, Carvalho L, Feld CK (2013) Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia 704:1–9

    Article  Google Scholar 

  • Huttunen I, Huttunen M, Piirainen V, Korppoo M, Lepistö A, Räike A, Tattari S, Vehviläinen B (submitted) A national scale nutrient loading model for Finnish watersheds – VEMALA. Environ Model and Assess

  • Jackson LJ, Lauridsen TL, Søndergaard M, Jeppesen E (2007) A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshw Biol 52:1782–1792

    Article  CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771. doi:10.1111/j.1365-2427.2005.01415.x

    Article  CAS  Google Scholar 

  • Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmala T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223

    Article  CAS  Google Scholar 

  • Laine M (2008) Adaptive MCMC methods with applications in environmental and geophysical models. Dissertation, Lappeenranta University of Technology

  • Lamon EC, Qian SS (2008) Regional scale stressor-response models in aquatic ecosystems. J Am Water Res Assoc 44:771–781

    Article  CAS  Google Scholar 

  • Lamon EC, Malve O, Pietilainen O-P (2008) Lake classification to enhance prediction of eutrophication endpoints in Finnish lakes. Environ Model Softw 23:938–947. doi:10.1016/j.envsoft.2007.10.008

    Article  Google Scholar 

  • Malve O (2007) Water quality prediction for river basin management. Dissertation, Helsinki University of Technology

  • Malve O, Qian S (2006) Estimating nutrients and chlorophyll a relationships in Finnish Lakes. Environ Sci Technol 40:7848–7853. doi:10.1021/es061359b

    Article  CAS  Google Scholar 

  • Mannio J, Räike A, Vuorenmaa J (2000) Finnish lake survey 1995: regional characteristics of lake chemistry. Verh Int Ver Limnol 27:362–367

    CAS  Google Scholar 

  • Niemi J, Heinonen P, Mitikka S, Vuoristo H, Pietiläinen O-P, Puupponen M, Rönkä E (2001) The Finnish Eurowaternet with information about Finnish water resources and monitoring strategies Finnish Environment Institute, Environmental Protection, The Finnish Environment, No. 445, 952-11-0827-4 Edita Ltd, Helsinki, Finland

  • Nõges P, van de Bund W, Cardoso A, Solimini A, Heiskanen A-S (2009) Assessment of the ecological status of European surface waters: a work in progress. Hydrobiologia 633:197–211

    Article  Google Scholar 

  • Pätynen A (2014) Modelling phytoplankton in boreal lakes. Dissertation, University of Jyväskylä

  • Phillips G, Pietiläinen O-P, Carvalho L, Solimini A, Lyche Solheim A, Cardoso AC (2008) Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42(2):213–226

    Article  CAS  Google Scholar 

  • Pilke A (ed) (2012) Ohje pintaveden tyypin määrittämiseksi 2012 (in Finnish). Finnish Environment Institute, Helsinki

    Google Scholar 

  • Puustinen M, Tattari S, Koskiaho J, Linjama J (2007) Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Tillage Res 93:44–55

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramin M, Stremilov S, Labencki T, Gudimov A, Boyd D, Arhonditsis GB (2011) Integration of numerical modeling and Bayesian analysis for setting water quality criteria in Hamilton Harbour, Ontario, Canada. Environ Model Softw 26:337–353

    Article  Google Scholar 

  • Reckhow KH (1993) A random coefficient model for chlorophyll–nutrient relationships in lakes. Ecol Model 70:35–50

    Article  CAS  Google Scholar 

  • Rekolainen S, Kämäri J, Hiltunen M, Saloranta T (2003) A conceptual framework for identifying the need and role of models in the implementation of the Water Framework Directive. Int J River Basin Manag 1(4):347–352. doi:10.1080/15715124.2003.9635217

    Article  Google Scholar 

  • Rode M, Arhonditsis G, Balin D, Kebede T, Krysanova V, van Griensven A, van der Zee SEATM (2010) New challenges in integrated water quality modelling. Hydrol Process 24:3447–3461. doi:10.1002/hyp.7766

    Article  Google Scholar 

  • Soetaert K, Petzoldt T (2010) Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. J Stat Softw 33(3):1–28

    Google Scholar 

  • TMDL committee (2001) Assessing the TMDL Approach to Water Quality Management. Committee to Assess the Scientific Basis of the Total Maximum Daily Load Approach to Water Pollution Reduction. National Academy Press Washington, D.C. ISBN: 0-309-07579-3, p 122

  • Vollenweider RA (1968) The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Paris: Organization for Economic Co-operation and Development. Technical report: DAS/CSI/68.27, p 250

  • Vollenweider RA (1975) Input–output models with special reference to the phosphorus loading concept in limnology. Schweiz Z Hydrol 37:53–84

    CAS  Google Scholar 

  • Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem 1st Ital Idrobiol 33:58–83

    Google Scholar 

  • Wagner T, Soranno PA, Webster KE, Spence Cheruvelil K (2011) Landscape drivers of regional variation in the relationship between total phosphorus and chlorophyll in lakes. Freshw Biol 56:1811–1824

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank Roger Jones (University of Jyväskylä) for valuable comments on the early versions of the manuscript. This study was funded by the Finnish Ministry of the Environment, the GisBloom EU/Life + project (Life09 ENV/FI/000569), the WISER 7th EU Framework Programme (Contract No.: 226273), and the integrated EU project MARS (“Managing Aquatic ecosystems and water Resources under multiple Stress”) within Framework Programme 7, Theme ENV.2013.6.2-1: Water resources management under complex, multi-stressor conditions (Contract No. 603378). Work of Anita Pätynen was funded by Maj and Tor Nessling foundation, the VALUE doctoral school and the Maa- ja vesitekniikan tuki ry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niina Kotamäki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotamäki, N., Pätynen, A., Taskinen, A. et al. Statistical Dimensioning of Nutrient Loading Reduction: LLR Assessment Tool for Lake Managers. Environmental Management 56, 480–491 (2015). https://doi.org/10.1007/s00267-015-0514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0514-0

Keywords

Navigation